CHROM. 4743

Thin-layer chromatography of some plant phenolics

In the course of studies on the role of phenolics in plant metabolism it became necessary to separate and identify a number of phenolic compounds. Although there have been many reports in the literature on thin-layer chromatography (TLC) used for this purpose²⁻⁵ much of the information available for the compounds of interest has been obtained using paper chromatography⁶⁻⁸. In order to obtain the advantages of speed and sensitivity available with TLC we felt it necessary to determine the R_F values of various standards by this technique.

TLC was carried out on 20×20 cm MN-polygram CEL 300 cellulose sheets obtained through Brinkmann Instruments, Inc. The solvents used were 2% formic acid (A), 20% potassium chloride (B), isopropyl alcohol-ammonium hydroxide-water, 8:1:1 (C), and 10% acetic acid (D). The solvents were prepared fresh immediately before use. The plates were examined under short-wave UV light after developing and the properties of the compounds were noted. The plates were then sprayed with freshly prepared diazotized p-nitroaniline or diazotized sulfanilic acid¹ and the colors which developed were noted within 20 min.

The characteristics of a number of phenolics, coumarins and flavonoids in this system are reported in Table I. Detection of the compounds could be made at the $0.2-1.0 \mu g$ range.

TABLE I
CHARACTERISTICS OF SOME PHENOLICS. FLAVONOIDS AND COUMARINS

Compound	R_F				Detection		
	\overline{A}	В	С	D	\overline{UV}	DSA	DNA
Phenolics							
Acids							
m-Anisic	0.66	0.67	0.49	0.65	$\mathbf{F}^{\mathbf{n}}$	lt. tan	
p-Anisic	0.56	0.62	0.49	0.53	Q^{b}	tan	tan
- Caffeic	0.11	0.16	0.23	0.36	ы. г	tan	grey
Chlorogenic	0.08	0.45	0.49	0.68	bl. F	grn-tan	tan
trans-Cinnamic	0.64	0.57	0.44	0.54	Q		
o-Coumaric	0.34	0.39	0.29	0.51	Q F	orange	violet
m-Coumaric	0.43	0.26	0.33	0.52	${f F}$	orange	violet
<i>p</i> -Coumaric	0.34	0.33	0.28	0.47	Q	red	blue
3,4-Dihydroxyhydrocinnamic	0.18	0.64	0.70	0.76	Q F	brown	violet
3,4-Dimethoxybenzoic	0.53	0.32	0.50	0.66	\mathbf{F}	tan	violet
Ferulic	0.28	0.21	0.19	0.43	bl. F	purple	blue
Gallic	0.09	0.33	0.31	0.46	F	grn-brwn	tan
Gentisic	0.29	0.37	0.32	0.54	bl. F	yel-brwn	tan
o-Hydroxybenzoic (salicylic)	0.70	0.57	0.44	0.62	bl. F	yellow	red
m-Hydroxybenzoic	0.37	0.63	0.58	0.70	\mathbf{F}	yellow	rose
p-Hydroxybenzoic	0.27	0.59	0.52	0.70	Q	yellow	red
3-Hydroxy-4-methoxycinnamic	0.26	0.14	0.21	0.39	Q F	orange	purple
Isochlorogenic	0.05	0.04	0.10	0.26	F	grn-tan	yel-tan
p-Methoxycinnamic	0.63	0.09	0.14	0.32	Q bl. F	-	
5-Methoxysalicylic	0.07	0.44	0.41	0.60	bl. F	brown	

TABLE I (continued)

Protocatechuic	0.05	0.51	0.44	0.60	bl. F	tan	grey
Pyrocatechuic	0.19	0.48;	0.44	0.63	bl. F	tan	violet
a-Resorcylic	0.21	0.48	0.45	0.59	Q	red-orange	
β-Resorcylic	0.30	0.40	0.39	0.54	ы́. ғ	vel-brwn	yellow
y-Resorcylic	0.71	0.39	0.66	0.81	F	brown	orange-tan
Sinapic	0.18	0.14	0.23	0.38	bl. F	violet	purple
Syringic	0.10	0.46	0.43	0.63	F	red	blue
Vanillic	0.18	0.52		0.63	\mathbf{F}	orange	violet
·	0,10	0.52	0.44	0.03	•	orange	VIOICE
Aldehydes				_		•	
2,4-Dihydroxybenzaldehyde	0.37	0.43	0.54	0.65	F	brown	brown
2,5-Dihydroxybenzaldehyde	0.38	0.52	0.62	0.71	bl. F	grn-brwn	green
3,4-Dimethoxybenzaldehyde	0.94	0.45	0.66	0.78	y. F		
4,6-Dimethoxysalicylaldehyde	0.90	0.08	0.18	0.38	F	yellow	
m-Hydroxybenzaldehyde	0.79	0.57	0.69	0.78	Q .	yellow	
p-Hydroxybenzaldehyde	0.64	0.56	0.68	0.76	Q Q F	yellow	tan
Protocatechualdehyde	0.36	0.50	0.60	0.68	Õ	grn-grey	tan
Salicylaldehyde	0,63	0.52	0.63	0.71	Ĩ	orange	
Syringaldehyde	0.46	0.48	0.62	0.73	O	pink	bl-grey
Vanillin	0.62	0.53	0.63	0.73	Õ	orange	violet
o-Vanillin	0.61	0.49	0.61	0.74	Q Q F	yellow	pink
0- v commin	0.01	0.49	0.01	0.74	.4.	yenow	pinic
Alcohols and phenols		_	_			•	
Catechol	0.42	0.65	0.69	0.77	Ŏ Ö	brown	brwn-viol
Coniferyl alcohol	0.89	0.38	0.56	0.66	Q	violet	bl-grey
Eugenol	0.98	0.09	0.27	0.32		red	blue
Guaiacol	0.95	0.69	0.71	0.79		orange	violet
o-Hydroxybenzyl alcohol	0.92	0.71	0.83	0.85	Q	gold	rose
Isoeugenol	0.94	0.06	0.15	0.21	Q	peach	violet
Isovanillyl alcohol	0.83	0.67	0.79	0.83	Ö Ö Ö	orange	purple
Phloroglucinol	0.16	0.42	0.53	0.63		yel-brwn	brown
Flavonoids							•
Apigenin	0.17	0,00	0.00	0,00	O	gold	yellow
Catechin	0.08	0.20	0.31	0.58	Ő	yel-grn	brown
Chrysin	0.64	0.00		0.04	Ω Q Q y. F	yellow	orange
Fisetin		0.00	0.00	0.04	v. F	orange	oran-brwn
Fustin	0.05				F. F	tan	tan
	0.09	0.24	0.33	0.50			
Hesperetin	0.32	0.02	0.04	0.16	Q	orange	violet
Kaempferol	0.02	0.00	0.00	0.02	or. F	yellow	yellow
Morin	0.02	0,00	0.02	0.13	or. F	orange	yellow
Myricetin	0.00	0.00	0.00	0.00	y. F	grn-brwn	grn-brwn
Naringenin	0.48	0.03	0.04	0.19		gold	yel-brwn
Phloretin	0.48	0.00	0.03	0.05	Q	orange	yellow
Quercetin	0.03	0.00	0.00	0.01	gr. F	grey-grn	brown
Rutin	0.04	0.15	0.29	0.49	Ď	tan	yel-grn
Coumarins							
Coumarin	0.46	0.43	0.56	0.72	0	orange	violet
5,7-Dihydroxy-4-methylcoumari		0.06	0.10	0.34	Q F	orange	orange
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.97	0.06	0.14	0.25	bl. F	yellow	red-brwn
Esculetin ,	0.16	0.21	0.28	0.46	bl. F	yel-brwn	yellow
Esculin					F. F	vellow	yenow —
	0.45	0.54	0.61	0.75	F	•	violet
4-Hydroxycoumarin	0.72	0.41	0.50	0.57		yellow	
4-Methyldaphnetin	0.21	0.19	0.29	0.47	F	yellow	yellow
4-Methylumbelliferone	0.62	0.21	0.34	0.64	bl. F	tan	tan
Scopoletin	0.47	0.17	0.32	0.49	bl. F	violet	yellow
Umbelliferone	0.60	0.32	0.43	0.61	bl. If	yel-brwn	yel-brwn

a F indicates fluorescence.b Q indicates quenching.

The system used proved satisfactory in most respects. Two-dimensional chromatography using the following solvent combinations could be used to separate mixtures of phenolics: A-C, B-C, D-C, and D-B. Solvent C proved to be unsatisfactory for use as the first solvent in a two-dimensional system.

Biological Sciences Research Center, Shell Development Company, Modesto, Calif. 95352 (U.S.A.) N. O. JANGAARD*

I R. M. ACHESON, R. M. PAUL AND R. V. TOMLINSON, Can. J. Biochem. Physiol., 36 (1958) 295.

2 S. ASEN, J. Chromatog., 18 (1965) 602.

- 3 J. D. CONRADIE AND L. P. NEETHLING, J. Chromatog., 34 (1968) 419.
- 4 J. W. Copius-Peereboom and H. W. Beekes, J. Chromatog., 14 (1964) 417.

5 J. W. Frankenfeld, J. Chromatog., 18 (1965) 179.

- 6 L. A. GRIFFITHS, Nature, 180 (1957) 286.
- 7 L. A. GRIFFITHS, Nature, 182 (1958) 733. 8 J. B. HARBORNE AND J. J. CORNER, Biochem. J., 81 (1961) 242.

Received March 9th, 1970

CHROM. 4776

A spray reagent for methylated phenolic compounds on thin-layer plates

Phosphomolybdic acid is a nonspecific reagent which gives blue spots with phenolic compounds and their methyl ethers¹ and also with lipids² on thin-layer plates. In order to develop a specific spray reagent for some classes of methylated phenols, use has been made of the characterist iccolour reaction of certain phenolic methyl ethers when these are dissolved in conc. HNO₃ (ref. 3). Examination of conc. HNO₃ as a spray reagent with various types of phenolic methyl ethers has shown its suitability as a sensitive spray reagent on thin-layer chromatograms of Silica Gel G (E. Merck). The results are detailed in Table I.

TABLE I COLOUR DETECTION OF PHENOLIC METHYL ETHERS The sensitivity in each case was 5 μg .

Sample No.	Name of the compound	Colour produced	Time taken for colour development	
1	Phloroglucinol trimethyl ether	Deep blue	Immediately	
2	Resorcinol dimethyl ether	Green	Immediately	
3	Tetra-O-methyl-ellagic acid	Light blue	Immediately	
4	Vanillin	Deep yellow	Immediately	
5	Ferulic acid	Deep yellow	2 min	
6	Vanillic acid	Yellow	5 min	

^{*} Present address: Shell Development Company, Biological Sciences Research Center, P.O. Box 4248, Modesto, Calif. 95352, U.S.A.

J. Chromatog., 50 (1970) 146-148